Statistics
성능평가지표, 모델 평가 방법 Python Code
koos808
2020. 9. 28. 20:01
728x90
반응형
성능 평가 지표 Python code(파이썬 코드)
* 함수를 정의해서 직접 구하는 방식
# MAE
def MAE(y_true, y_pred):
return np.mean(np.abs((y_true - y_pred)))
print("MAE == ", MAE(y_true, y_pred))
# MAPE
def MAPE(y_true, y_pred):
return np.mean(np.abs((y_true - y_pred) / y_true))
print("MAPE == ", MAPE(y_true, y_pred))
# MSE
def MSE(y_true, y_pred):
return np.mean(np.square((y_true - y_pred)))
print("MSE == ", MSE(y_true, y_pred))
# RMSE
print("RMSE == ", np.sqrt(MSE(y_true, y_pred)))
* sklearn.metrics 사용하는 방식
# MAE
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_true, y_pred)
# MSE
from sklearn.metrics import mean_squared_error
mean_squared_error(y_true, y_pred)
# RMSE
np.sqrt(MSE(y_true, y_pred))
728x90
반응형